
U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

PHYSD2598

Physica D 2598 (2000) 1–12

Nonlinear response of the sine-Gordon breather to an a.c. driver

K. Forinasha,∗, C.R. Willisb

a Division of Natural Sciences, Indiana University Southeast, 4201 Grant Line Road, New Albany, IN 47150-6405, USA
b Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA

Received 10 January 2000; received in revised form 28 September 2000; accepted 29 September 2000
Communicated by I. Gabitov

Abstract

We investigate the nonlinear response of the continuum sine-Gordon (SG) breather to an a.c. driver. We use an ansatz by
Matsuda which is an exact collective variable (CV) solution for the unperturbed SG breather and uses only a single CV,r(t),
which is the separation between the center of masses of the kink and antikink that make up the breather. We show that in
the presence of a driver with an amplitude below the breakup threshold of the breather into kink and antikink, the a.c.-driven
SG is quite accurately described by ther(t), which is a solution of an ordinary differential equation for a one-dimensional
point particle in a potentialV (r) driven by an a.c. driver and with anr-dependent mass,M(r). That is below the threshold
for breakup, the solution for a drivenr(t) and the use of the Matsuda identity gives a solution for the a.c.-driven SG, which
is very close to the exact simulation of the a.c.-driven SG. We use a wavelet transform to analyze the frequency dependence
of the time-dependent nonlinear response of the SG breather to the a.c. driver. We find the wavelet transforms of the CV
solution and of the simulation of the a.c.-driven SG are qualitatively very similar to each other and often agree quite well
quantitatively. In cases of breakup of the breather into K and A, where there is no appreciable radiation of phonons, we find
the CV solution is very close to the exact simulation result. © 2000 Elsevier Science B.V. All rights reserved.

PACS:05.40.+j; 03.40.-t; 74.50.+r
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1. Introduction

In this paper, we use a collective variable (CV) ap-
proach to investigate the nonlinear response of a con-
tinuum sine-Gordon (SG) breather to an a.c. driver
which satisfies the differential equation

φ,tt − φ,xx + V,φ = 0,

V (φ) ≡ Γ 2
0 (1 − cosφ)εf (t)φ (1.1)

∗ Corresponding author.
E-mail address:kforinas@ius.edu (K. Forinash).

wheref (t) is the a.c. driver,ε the strength of the driver
andΓ 2

0 dimensionless. The CV,r(t), is the separation
between the center of mass of the kink (K) and the an-
tikink (A) that make up the breather. The equation of
motion for the one-dimesional “particle”r(t) is given
by Newton’s law for a particle whose mass,M(r),
depends onr moving in a potentialU(r) derived in
[1] and driven by an a.c. driver, see Eq. (2.4). In the
absence of the a.c. driver the solution,r(t), when in-
serted into the Matsuda identity [2] gives the rigor-
ous solution of the SG breather. When we add the a.c.
driver to ther(t) equation of motion, solve forr(t),

0167-2789/00/$ – see front matter © 2000 Elsevier Science B.V. All rights reserved.
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and substitute into the Matsuda identity we obtain an
approximate solution for the SG breather in the pres-
ence of the a.c. driver. The solution in the presence of
the driver is only approximate because the identity is
only exact for the undriven breather. However, as we
show in Section 3, the approximate CV solution for
the breather is very close to the exact simulation result
for the a.c.-driven SG for driver amplitudes below the
amplitude for the breakup of the breather into K and
A. In some cases even at breakup of the breather into
K and A the CV solution is very close to the exact
simulation result. Consequently we are able to obtain
quite-detailed knowledge of the nonlinear response of
the SG solution to an a.c. driver by analyzing the solu-
tion of a one-dimensional ordinary differential equa-
tion for r(t) which yields the exact breather solution
when the a.c. driver is not present.

The frequencies that appear inr(t) due to the non-
linear particle potential,U(r), agree very well quali-
tatively and quantitatively with the simulation of the
full a.c.-driven SG equation. Also the amplitude of the
driver required for the breakup of the breather into K
and A agree qualitatively and fairly well quantitatively.
For the range of driver amplitudes and frequencies
used in this paper we find the intensity of the phonons
radiated to be small even in the case of breakup of the
breather into K–A. The main reason that phonon radi-
ation is small is thatr(t) has to be driven nonlinearly
away from its (nonlinear) motion in the undriven case
before there can be radiation of phonons. Below the
threshold for breakup the radiation intensity,I = ε2m,
wherem > 1 andε is the dimensionless driver am-
plitude which we take in this paper to be in the range
0.04 ≤ ε ≤ 0.2. Near breakup only a linear deviation
from the undrivenr(t) is needed to cause the radiation
of the phonons observed in the simulations.

We compare the frequency spectrum of the CV ap-
proximation with the exact simulation of the driven
SG by using a wavelet description which enables us
to see the frequencies that appear in both the CV ap-
proximation and the simulation of the full a.c.-driven
continuum SG equation at different times in their evo-
lution. For example we find that below the threshold
for breakup both the CV approximation and the exact
simulation show a nonlinear frequency “beating” be-

tween the driver and the breather which shows up in
the phonon band. We also find that in all cases when
the exact simulation undergoes breakup into a K and
A the CV approximation also breaks up into a K and
A.

The nonlinear response of the undamped a.c.-driven
SG breather in this paper is time dependent and con-
tains a spectrum of frequencies with variable ampli-
tudes which depend sensitively on the amplitude and
frequency of the driver. The nonlinear response con-
trasts with the damped a.c.-driven SG [3] where the
main response is a constant shift (modulation) of the
undriven breather frequency which depends on the
driver amplitudes, driver frequency and on the fixed
value of the energy of the kink. The fixed energy is de-
termined by balancing the energy loss due to damping
with the energy gain from the driver. In Section 2, we
derive the equations of motion forr(t).We compare
the results for the CV approximation with the simula-
tion of the a.c.-driven SG in Section 3. In Section 4,
we summarize and conclude the paper.

2. CV equations of motion

We first briefly review the results for the rigorous
single CV theory of the breather and the K–A system.
The analytic solution for the breather is

φb(x, t) = 4 tan−1
[
Γb cos(ωt − θ)

ωb cosh(Γ x)

]
, (2.1)

where the center of mass of the breather is located at
zero,θ determines the initial phase,ωb is the breather
frequency andΓb < 1 obeys the dispersion lawω2

b +
Γ 2

b = 1. From Matsuda’s identity for the breather [2],
we definer(t) by

r(t) ≡ 2

Γb
sinh−1

[
Γb

ωb
cos(ωt − θ)

]
. (2.2)

When we substitute Eq. (2.2) in the analytic solu-
tion, (2.1), and use the following identity tan−1 y −
tan−1 z = tan−1[y − z/(1 + yz)], we obtain

φ(x, t) = 4 tan−1 eΓ (x−r(t)/2)

−4 tan−1 eΓ (x+r(t)/2), (2.3)
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where here and in the remainder of the paper we drop
the subscript b onΓ , φ andω. Eq. (2.3) is also the
exact solution for K–A when we replaceΓ by γ ≡
(1 − 1

4 ṙ2)−1/2 andr(t) is given by

r(t) = 2γ −1 sinh−1
[

2

ṙ
sinh

γ ṙt

2

]
.

For details, see [1]. The close relationship between the
exact breather and the K–A solution follows from the
fact that the breather is a bound state and the K–A
is an unbound state of the “same” potentialU(Γ, r),
whereΓ > 1 for K–A andΓ < 1 for the breather.

The Hamiltonian for the rigorous single CV equa-
tions of motion for ther(t) for the breather and K–A
derived in [1] is

H = P 2
r

4Mr
+ U(r) + 8(Γ + Γ −1) + Vext(r)

with

ṙ = Pr

2Mr
, Ṗr = P 2

r

4Mr

d lnMr

dr
− dU

dr
− dVext

dr
,

where

Mr(r) ≡ 2Γ [1 + Γ r csch(Γ r)]. (2.4)

The potential is

U(r) ≡ 16Γ −1

sinh(Γ r)

{
−1

2
Γ 3r − 1

2
Γ r + Γ r coth2(Γ r)

− coth(Γ r) −
(

Γ r coth(Γ r) − 1

sinh(Γ r)

)}
.

When the solution of Eq. (2.4) withVext = 0, for
r with Γ < 1 is substituted in Eq. (2.1) we get
the exact SG breather solution. When the solution
of Eq. (2.4) for r with Γ = γ > 1 is substituted
in Eq. (2.1) we get the exact K–A solution. Next
we add the a.c. driver whose potential isVext(r) ≡
4εf (t)

∫ ∞
−∞dx{ tan−1 Γ (x − 1

2r) − tan−1 Γ (x + 1
2r)},

wheref (t) = ε sinΩt .
Note that dVext/dr = −16εΓf (t) and dVext/dΓ =

0. Thus the a.c. driver drivesr(t) directly. However,
even ifΓ was treated as a dynamical variable the a.c.
driver would not driveΓ directly, i.e., Γ (t) would
experience the driver only through the driver’s effect
on r(t).

3. Comparison of CV approximation with
simulation

In this section, we analyze some typical cases of the
a.c.-driven SG for the full SG partial differential equa-
tion (S) and for the CV description determined by the
solutionr(t) of the ordinary differential equation (2.4)
substituted in Eq. (2.3). Our purpose is to first exam-
ine the time-dependent nonlinear response of the SG
breather to the a.c. driver and second to show how the
much simpler CV description which is completely de-
termined by the solutionr(t) of Eq. (2.4), provides us
with information that appreciably increases our under-
standing of the nonlinear response of the SG breather
to an a.c. driver. In order to compare the CV calcu-
lation with the full simulation equations (S) of the
SG breather they were both iterated with a standard
fifth-order Runge–Kutta method [4] and their output
compared. Typically in the absence of a driver with a
time step of 0.01 the energy is conserved to an accu-
racy of 0.001% over a whole simulation which lasted
on the order of 300 time units. With a driver the en-
ergy is not expected to be conserved exactly, however,
in all cases the energy fluctuated around a constant av-
erage energy which did not increase or decrease sig-
nificantly over the length of the simulations. Different
initial phase conditions were examined and found to
affect mainly the time needed until breakup (driving
in resonance was extremely sensitive). To avoid ques-
tions related to phase the driver was turned on very
slowly (over 10–20 time units) in most cases except
where noted.

We find that a very useful technique to present fre-
quency and time-dependent information in our simu-
lations is to use a wavelet transform [5]. The underly-
ing idea of the wavelet transform used in this paper is
similar to that of the “windowed” Fourier transform
defined by

Tf(t, ξ) =
∫ ∞

−∞
f (x)g(x − t) e−i2πξx dx (3.1)

which is the Fourier transform with a window function
g inserted, which limits the calculation of frequency to
an interval of time around timet . (The window func-
tion g can be chosen to be a Gaussian, which results in
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a Gabor transform.) The wavelet transform we use dif-
fers from this transform in that the “window” changes
width as the frequencyξ is changed. For high frequen-
cies, the window is narrow (which will catch rapid
changes in frequency better); for low frequencies, the
window is wider (which localizes frequency better).
The continuous wavelet transform is well suited for
localizing frequency and for localizing time whereas
the windowed Fourier transform can often localize one
domain well but not the other.

An inherent limitation of the transform restricts how
well time and frequency can simultaneously be local-
ized with this method. In a fashion mathematically
similar to the uncertainty principle, both time and fre-
quency domains cannot be made arbitrarily small. This
limitation manifests itself in our graphs as a trade-off
between how “blurry” the image is vertically (i.e., lo-
calization of frequency), and how blurry the image is
horizontally (i.e., localization of time).

Wavelet transforms were performed on the ampli-
tude oscillations of the central site of the breather as
the breather evolved in time. The continuous wavelet
transform of Grossman and Morlet was used which,
for a functionf on the line, is defined by

Wf(t, ξ) =
∫ ∞

−∞
f (x)ω(ξ(x − t))ξ dx,

ω(x) =
(

1

σ
√

2π

)
ei2πx e−x2/2σ2

. (3.2)

The transformWf(t, ξ) shows information about the
strength of the signalf at timet and frequencyξ . In-
tensity plots (often called spectrograms) of frequency
versus time are rendered as graphs showing the inten-
sity of the frequencies present as a function of time.
The graphs are arbitrarily scaled to fit the range of in-
tensity values.

We start with a comparison of the full SG, Eq. (1.1),
with the CV approximation using the solution of
Eq. (2.4) forr(t) for some typical values of the param-
eters. Although we examined a wide range of breather
and driver frequencies in this paper we present only
the ω = 0.9 and 0.7 results because as the breather
frequency is decreased the discreteness of the simu-
lations starts to become important and the radiation
of phonons due to the Peirels–Nabarro potential then

interfere with the radiation of phonons caused by the
nonlinearity inr(t) produced by the driver.

In Fig. 1 we compare the shape of the SG breather
in the simulation of the a.c.-driven SG breather (solid
line) and for the CV approximation of the a.c.-driven
SG (dotted line). Note that the CV approximation
agrees with S in the diagram very closely everywhere
but in the wings of the line. We found this agreement is
maintained for long periods of time in all cases below
threshold for breakup. In Fig. 1 the total number of
breather oscillations at this point has been 42 oscilla-
tions for the simulation and 43 oscillations for the CV
calculation. The reason for the oscillation in the wings
of the simulation S but not in the CV is because the
CV approximation does not possess phonon degrees
of freedom but the simulation S does. The oscilla-
tion has a frequency of approximately 1.08 (where the
phonon band edge has a frequency of 1 in our units)
which is very close to the SG breather quasimode (see
[6]). The quasimode is caused by the oscillation of the
shape of a kink or a breather and since the frequency
is in the phonon band near the band edge it is a quasi-
mode and not a pure mode. The corresponding mode
in the φ4 equation is in the gap and is a pure mode.
We find that the quasimode is produced att = 0 in
S because when the a.c. driver is applied att = 0
it causes an instantaneous change in the shape of the
breather which then oscillates and radiates phonons of
frequency of 1.08. Thus we find that CV and S are
remarkably close together and differ at long times be-
cause of the quasimode radiation of phonons. If the a.c.
driver is turned on sufficiently slowly the quasimode
will not be excited and S and CV will remain close to
each other as long as the a.c. driver is well below the
threshold for breakup. In some cases (see Fig. 3a and
b) we find S radiates phonons due to the interaction
of the a.c. driver with the nonlinear breather oscilla-
tions which are not related to slope oscillations. Near
breakup of the breather into K and A for appreciable
driver amplitudes there can be instability, chaotic be-
havior and sometimes copious radiation of phonons
which for the full simulation may lead to a breakup
into multiple breathers rather than K–A. In most of
the cases we investigated at breakup the phonon radi-
ation is weak and there is a strong similarity between
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Fig. 1. Simulation and CV calculation of the breather shape captured at maximum amplitude shortly before 300 time units. The breather
frequency is 0.9, the driver frequency is 0.7 and the driver amplitude is 0.02 in dimensionless units.

S and CV breakdown when the a.c. driver has a small
amplitude.

The amplitude of the driver required for breakup
into K and A as a function of the driver frequency is
presented in Fig. 2. Except at very low driving fre-
quencyΩ = 0.1 and resonanceΩ = 0.9 the thresh-
old amplitude for breakup for S and CV are close to
each other. When the driving frequency is resonant
with the breather frequency the agreement with S and
CV breaks down because at resonance a large num-
ber of phonons are radiated. It is somewhat surprising
that the agreement between S and CV at breakup away
from the resonance is so good. Different initial phases
were tried and found only to affect the length of time
until breakup. Fig. 2 is for in-phase initial conditions.

In Fig. 3a and b we show the breakup of the breather
into K–A for S and for CV forΩ = 0.4, ω = 0.7 and

driving amplitude of 0.1. In the time before breakup
S and CV agree very well and the times of breakup
differ by only seven time steps. After breakup K and
A recede from each other at the same speed and K
and A each oscillate at the driving frequency. How-
ever, it is clear that there is a difference in the speed
of the K (and A) in S which is 0.17 and the speed of
the K (and A) in CV which is 0.70. The reason for
the difference speeds in S and CV is that at breakup
S radiates phonons while the CV solution cannot ra-
diate phonons. The total energy is approximately the
same in both cases and the total rest energy is the same
in both cases. Thus the energy radiated by phonons
in S shows up as higher kinetic of K and A in the
CV calculation. An examination of the amplitude at
smaller scales shows phonons present in the simula-
tion case. Most breakups were into K–A pairs but oc-
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Fig. 2. Driving amplitude needed to cause breakup within 300 time units with various driver frequencies for a breather with a frequency
of 0.9, driver on from the beginning. Simulation values are denoted by×, CV calculation by+.

casionally the simulation broke up into two smaller
breathers.

In Fig. 4a and b we show the wavelet transform of a
breather withω = 0.9, Ω = 0.6 and amplitude= 0.1
which is well below breakup. The driver is turned on
gradually over 10 time units starting att = 50. We see
that there are frequencies above the band edge around
1.15 in both S and CV. These frequencies arise from
the nonlinear breather oscillation driven by the a.c.
driver. In the simulation these frequencies lead to ra-
diation of phonons. A beating betweenω andΩ can
be seen in both case with a time duration of about 10
time units. (The small variations in intensity of ap-
proximately five time units are an artifact of the calcu-
lation and are not physical.) There is a faint interme-
diate frequency between and just below the frequency

0.8 in both S and CV. Also there is a faint frequency at
the band edge in both S and CV. The CV calculation
shows the breather frequency shifts downward slightly
while the simulation does not because the simulation
is radiating phonons which causes the frequency to
rise thus canceling the drops in frequency.

In Fig. 5a and b we show the wavelet transform
with ω = 0.9, Ω = 0.8 and amplitude= 0.1 which is
just above breakup for S and just below breakup for
CV with the driver turned on gradually over 10 time
units starting att = 50. The frequency shifts down to
the driver frequency in both S and CV. Att = 150 the
breakup of S into K and A is complete. In the time
betweent = 50 and 150 the agreement between S
and CV for frequencies at 0.9 and below is very good
with bands around 0.8, between 0.6 and 0.7 and be-
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Fig. 3. Breather breakup into kink–antikink pair (simulation (a), CV calculation (b)). Driving frequency is 0.4, breather frequency is 0.7
and driving amplitude is 0.1. Speed of the kink (or antikink) after breakup is approximately 0.17 for the simulation and 0.70 for the CV
calculation.
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Fig. 4. Wavelet transform of the central location of the breather with initial frequency 0.9, driver frequency 0.6 and amplitude 0.1 (well
below breakup). The wavelet transform of the simulation is shown in (a), the CV calculation in (b). The small variations in intensity of
approximately five time units are an artifact of the calculation and are not physical.

tween 0.4 and 0.5. Since the CV solution cannot ra-
diate or have shape mode oscillations we can reason-
ably conclude that the frequencies in the phonon band
in the CV solution arise from the interaction between
the driver frequency and the frequencies which arise
from the difference between the undriven and driven
r(t). The frequency spectra of the simulation and the
CV calculation are nearly identical (as was the case
for all wavelet transforms for cases below breakup).

As a final example of the use of the CV,r(t), to
increase our understanding of the a.c.-driven SG we
consider the cases with the same driving frequency
Ω = 0.7, breather frequencyω = 0.9 and three
different but close driving amplitudes of 0.119765,
0.119768 and 0.119770 shown in Fig. 6. In all three
cases the SG breather breaks up into K and A. In most
cases we examined the breakup occurs smoothly as
in Fig. 6a. In Fig. 6b (which differs by only a rela-
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Fig. 5. Wavelet transform of the central location of the breather with initial frequency 0.9, driver frequency 0.8 and amplitude 0.1 (right at
breakup for simulation (a), just below breakup for CV calculation (b)). The small variations in intensity of approximately five time units
are an artifact of the calculation and are not physical.

tive percentage of the driver amplitude from Fig. 6a
of 0.0025%), we see irregular behavior for an appre-
ciable time before breakup. In Fig. 6c (which differs
only by a relative percentage change of the driver am-
plitude from Fig. 6b of 0.0017%), we see the develop-
ment of a multifrequency quasiperiodic modulation of
the breather frequency which might be signaling the
onset of chaotic behavior. The three very different re-
sults for three nearly equal driver amplitudes demon-
strate very effectively the efficacy of using the CV,

r(t), to understand the a.c.-driven SG in the breakup
region.

The cases we discussed in this section are typical
and are a representative selection from the many cases
we simulated. In the region away from breakup the
agreement is very good. The only significant qualita-
tive difference is that for S phonons can be radiated
which only has an appreciable effect for cases near
breakup. For cases of breakup where phonon radiation
is low there is good agreement between S and CV.
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Fig. 6. Plot of r(t) showing breather breakup into K–A pair for the driving frequency 0.7, breather frequency 0.9 and three different
amplitudes. (a) Driver amplitude= 0.119765; (b) driver amplitude= 0.119768; (c) driver amplitude= 0.119770. In these cases the driver
was turned on gradually over 20 time units starting att = 10.
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4. Discussion and conclusions

Previously the authors of [7] investigated the
breakup of the SG breather into K and A by a
time-independent constant force and obtained good
agreement between their theory and their numerical re-
sults. In a comprehensive review paper on “Solitons in
nearly integrable systems” [8] the authors carried out
extensive investigations of several problems including
kink–antikink interactions and breather dynamics us-
ing general perturbation induced evolution equations
for the parameters where the time dependence of the
parameters arises solely from the perturbation. They
obtained results for a range of problems from breakup
of the breather into kink and antikink and for cases
with external damping and driving terms, including
the results of [7]. The most fundamental difference of
our approach from theirs is that the CV,r(t), has time
dependence even without a perturbation that gives the
rigorous analytic solution, using the Matsuda identity,
for the breather solution to the SG partial differential
equation. Any external perturbation only produces a
change in the time dependence of the solution of the
r(t) equation of motion which in turn causes a change
in the breather time dependence. Consequently the
time-dependent change in the spectra ofr(t) due to
the perturbation directly, using the Matsuda identity
leads to the change of the time-dependent spectra of
the SG breather.

The good agreement between S and CV below
breakup of the breather into K and A for the parame-
ter range we use in this paper indicates the dominate
effect on the breather by the a.c. driver is to change
the distance,r(t), between the center of masses of the
bound K and A that constitutes the breather from the
value of r(t) in the undriven breather. Consequently
the change in slope,Γ (t), is small or zero in the
cases we consider. Note the spatially independent a.c.
driver is very different than cases where the breather
experiences a spatially dependent driver. In those
cases the driver often causes the slope to oscillate.
The reason the slopeΓ is constant or nearly constant
for the a.c. driver (away from breakup) as opposed to
the spatially dependent driver is that if you introduce
Γ (t) as a CV and work out the rigorous equations

of motion for Γ (t) you find that the a.c. driver does
not appear in theΓ equation of motion. The reason
is that the breather shape mode is orthogonal to the
a.c. driver (see [5]). Thus the only way thatΓ (t) can
develop a time dependence is through the interaction
with r(t) which is directly driven by the a.c. driver.
For the parameter range we use in this paper the only
place where theΓ slope mode could start to oscillate
is at the breakup of the breather into K and A where
the slope is altered at breakup. Parenthetically the
time dependence of the slope in Fig. 1 is not directly
due to the a.c. driver but is a consequence of the initial
condition att = 0 of the a.c.-driven SG equation.

In [3] the authors expressed their results for the
damped a.c.-driven SG in terms of a constant fre-
quency modulation. We can also express our un-
damped results as a frequency modulation by solving
Eq. (2.2) forθ(t) in terms ofr(t) and then taking the
time derivative ofθ(t) which is the time-dependent
frequency modulation (which depends only onr(t)

and ṙ(t)). In the present paper, we are only consider-
ing the undamped case so the frequency modulation
is an oscillatory function of time with a rich spectra of
frequencies which appear in our wavelet transforms.
From the wavelet transform we see that below breakup
the frequencies that appear in the phonon band are
due to the nonlinearity in the difference between the
driven and undrivenr(t) caused by the a.c. driver.

The results on the a.c.-driven SG suggest a set of
problems worth pursuing. When damping is added to
the SG in the underdamped limit there will be a range
of phenomena such as those that appear in the treat-
ments of the underdamped pendulum which would ap-
ply to ther(t) equation of motion. Then with the use
of the Matsuda identity we could find the new breather
behavior of the SG that results from the correspond-
ing r(t) behavior. A second area of study would be the
effect of moderately stronger drivers even though the
agreement would not be as good as the weaker drivers
quantitatively but the qualitative agreement would still
be good. The case of damped driven SG has been
treated in [9–11] and it would be interesting to com-
pare those results with the present approach using CV.
A fourth region worth studying further is driving at
frequencies in resonance with the breather. Finally the
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behavior ofr(t) might be an interesting tool for in-
vestigating the chaotic nature of the breakup.
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