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We read with much interest the paper by Lang and Fori-
nash ~Ref. 1! but felt we needed to add words of caution
regarding wavelet analysis. We state at the outset, though, it
is not our intent to either blemish or deny the results of Lang
and Forinash. We do, however, want to make clear that,
when applied to well-defined problems,wavelets work won-
ders. When applied, on the other hand, to less well-defined
problems, the wavelet transformdoes not always‘‘produce
spectrograms which show the frequency content of sounds
~or other signals! as a function of time in a manner analogous
to sheet music.’’

The analysis in Ref. 1 is indeed accurate and to the point
and produces the desired results in the cases described there
because the signals analyzed were artificially created; conse-
quently, their pitch and frequency content were knowna
priori . In phenomena where intensity and frequency content
are not knowna priori, such as turbulent flows and other
random signals, the wavelet transform often obscures signifi-
cant information in the signal. As an example, a wavelet that
is a second-difference operator, such as the French-hat wave-
let, can provide no information on thelinear trend in a sig-
nal. For the unfamiliar reader, the French-hat wavelet is de-
fined as$2B(3a)12B(3a21)2B(3a22)%/2AL, where
a5t/L and B(a) is the standard box function. That is,
B(a)51 for 0<a<1, andB(a)50 otherwise.

The wavelets problem for practitioners studying random
turbulence is much like the problem posed by the professor
in a chemistry class when she gives a beaker of liquid to a
group of students and asks them to identify its contents. The
students conduct a variety of tests which are known to reveal
specific elements or compounds and then report their results.
If the liquid contains elements for which there are no known
tests, or if the students neglect to conduct a certain test, the
students cannot identify all the contents. The same problem
exists in identifying computer viruses—you can identify only
the knownones.

In Ref. 2 we demonstrate that wavelet analysis has limita-
tions which are not widely appreciated; failure to recognize
these can lead to misinterpretations. Reference 1 correctly
points out the limitations of both the short-time Fourier
transform and the Gabor transform, as well as the limitations
the uncertainty principleimposes on both the Fourier trans-
form and the wavelet transform. But the limitations on wave-

let analysis we emphasize in Ref. 2 are just as fundamental.
There we applied wavelet analysis to nonstationary turbu-
lence data, but our results apply to any random signal in
general. Our main point is that a given signal may contain
components that are orthogonal to the analysis~mother!
wavelet; consequently, for a wavelet analysis to be viable,
the analysis wavelet must be carefully matched to the phe-
nomenon of interest. That is, you must have somea priori
idea as to what scale elements are present in the signal and
which wavelets are best suited for isolating them.

Moreover, most wavelets are symmetric about the local-
ization time~usually denoted ast0! and therefore assign the
same weight to those elements of the signalforward in time
from t0 by an amountt as they do to those elementsback-
ward in time from t0 by an equal amount. In phenomena
such as turbulence, where energy dissipation and its compan-
ion irreversibility are commonplace, such an assignation is
plausible whent is small but cannot be a reliable character-
ization of the behavior whent is large; see Refs. 3, 4.

One of the limitations Lang and Forinash~Ref. 1! point
out with respect to the Wigner distributionV$ f (t,v)%—that
a spectrogram based onV$ f (t,v)% will show interference
artifacts or noise in regions where none should be—is not
really a limitation at all. In their analysis it does produce the
artifacts indicated, but in turbulent signals such artifacts are
nonlinearities that appear routinely in signals encountered in
nature. The source of the confusion is thatV$ f (t,v)% is de-
noted as theWigner distribution of f, the implication being
that frequencies revealed byV$ f (t,v)% are the frequencies
prevailing in f. This is true only iff is a stationary~transla-
tion invariant! random function, whereas the time-scale be-
havior revealed by the wavelet transform off is, under all
circumstances, at least a limited measure of the time-scale
behavior prevailing inf. Thus, comparing theutility of the
wavelet transform~which is linear! with that of V$ f (t,v)%
~which is nonlinear! is unwarranted. Nonlinear transforma-
tions often destroy even the Gaussian character of random
signals. Linear transformations do not. The statement in Ref.
1 that ‘‘at eacht, V$ f (t,v)% is an instantaneous Fourier
transform’’ is true, but it’s not the Fourier transform of the
given f.

The spectrograms produced by Lang and Forinash~Ref. 1,
Figs. 1–4! show good frequency and time localization be-
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cause the analysis wavelet they chose could be readily
matched to the familiar pitch and known frequency of the
signal. In this sense, the wavelet transform is indeed quite
useful. In measuring and characterizing signals encountered
in nature, though, the analyst must ascertain the unknown
pitch and frequency content by implementing a suitable sig-
nal analysis.

Recall thatpitch is a rather subjective quantity which, for
a pure tone of constant intensity, becomes higher as the fre-
quency increases; but for a pure tone of constant frequency,
it becomes lower as the intensity increases. In a signal whose
intensity and frequency content are unknown and perhaps are
even changing with time~nonstationary!, an ideal analysis
technique would be able to distinguish whether a decrease in
pitch is due to a constant intensity and decreasing frequency
or due to a constant frequency and increasing intensity. It
should also be able to indicate whether a constant pitch ac-
tually results from compensating changes in both frequency
and intensity.

In mathematical terminology, the above limitations on
wavelet analysis result because the wavelet set isincomplete
~Ref. 5!. In other words, there is a scale component in the
signal being analyzed which is orthogonal to each of the
wavelets in the set. In the analysis of Ref. 2, the peculiar
component is a linear trend, and the French-hat wavelet is
the analysis tool. This result is analogous to a theorem in
Fourier analysis due to Lerch~Ref. 6! which establishes that
if two functions differ by at most anull function, then the
two functions have the same Fourier transform. A null func-
tion is a function whose integral over the domain of interest
is zero. The null function intended here is the product of an
analysis wavelet and its peculiar orthogonal scale compo-
nent. Mallat ~Ref. 7!, though, reports thatcompletenessby
itself is not enough. Wavelet representations must also be
stable, meaning small modifications in the signal being ana-
lyzed should correspond to small perturbations in the wave-
let representation.

To elaborate further, wavelets have been described as
mathematical microscopes~Ref. 8!. This is indeed a very
useful and illustrative analogy, but keep in mind that simple
optical lenses suffer fromspherical aberration. This focus-
ing error results because simple lenses, unlike the human
eye, cannot be made with a variable focal length. Variable
focal length is what endows the human eye with its un-
matched ability to lift hidden images from seemingly mean-
ingless backgrounds. With a simple lens, on the other hand,
only the central portion of the lens produces a clear image.
The effect becomes even more limiting if the lens is used to
take close-up images, since it must then be very convex.

Analogously, wavelet transforms provide a technique for
focusing on information of a given scale size, sayL, in a
random signal of durationT, whereL,T, and ferreting this
information from the signal. The information obtained, how-
ever, depends on the analyzing wavelet~lens! used. Farge
~Ref. 9! explains the ‘‘wavelet aberration’’ property in this
way: ‘‘wavelet coefficients combine information about both
the signal and the wavelet.’’ What’s being computed with a
wavelet transform is, in fact, an integral of the product of the
frequency content of the signal itself and the frequency con-
tent of the wavelet@cf. Eq. ~8! of Ref. 2#. This effect is not
unlike that faced by every experimentalist, who must ask
herself ‘‘what effect does the instrument I use have on the
phenomenon I’m trying to measure?’’

Wavelets and wavelet analysis should, however, eventu-
ally find their proper place as advanced research tools for
signal analysis when we establish which wavelets are best
suited for which analyses~adaptivewavelet analysis!. Refer-
ence 1 suggests Meyer~Ref. 10! for answers to the question
of which wavelet is appropriate for a particular application.
Likewise, we address~Refs. 11 and 12! a specific problem
amenable to wavelets, although not like the one considered
in Ref. 1.
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We agree whole-heartedly with Trevin˜o and Andreas in
Ref. 1 that wavelets, particularly the continuous transform of
Morlet and Grossman which we use, cannot provide desired

information in many problems~such as the study of turbu-
lence!. We never meant to assert or imply otherwise. In par-
ticular, we certainly agree that our analysis would not shed
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light on the trend, median, or variance of a random signal.
But our analysis in Ref. 2 was never intended to identify
these statistical characteristics of a signal—in fact, our origi-
nal use of our analysis was to identify small shifts of fre-
quency over time in experimental data~produced in investi-
gations of lattice breather mode solitons!. Our analysis
served this purpose well~see Ref. 3!, and we were also de-
lighted that it worked well with other natural signals, such as
human singing~where the ascending harmonics of the phrase
‘‘do-re-mi’’ were clearly visible!. This is all we were refer-
ring to when we asserted that the transform produces spec-
trograms that show the frequency of sounds or other signals
as they change over time.

We also agree with Trevin˜o and Andreas that the wavelet
transform spectrogram shows as much information about the
wavelet as it does about the signal, and that the choice of
wavelets is important; their metaphor of spherical aberration
is entirely apt. But we take mild issue with their assertion
that good results are possible with our transform only by
knowing a priori the characteristics of the signal to be ana-
lyzed, and matching the wavelet to the signal. The informa-
tion provided by our wavelet transform is similar to the in-
formation provided by an ordinary Fourier transform, and
therefore we feel justified in saying it has considerable util-
ity.

We now consider two points in Ref. 1 that we believe
need clarification.

First, while we did not intend to suggest that the Wigner
transform is not useful for analyzing some phenomena~I.
Daubechies4 reports that the Wigner transform is of most
value for analyzing signals of brief duration!, we still believe
that it is less satisfactory than the continuous wavelet trans-
form for the analysis we performed. As we mentioned in Ref.
2, the Wigner transform produces artifacts which indicate the
presence of energy at times and frequencies where it is rea-
sonable to conclude no energy should be present. In fact,
consider a signal that consists of two ‘‘notes’’ of limited
duration, one at timet1 with frequencyw1 , and one at time
t2 with frequencyw2 . The Wigner transform will show an
artifact at time (t11t2)/2 and at frequency (w11w2)/2 of
amplitude similar to the two notes—even if t1 andt2 andw1

andw2 are arbitrarily far apart.~See Y. Meyer in Ref. 5.! We
would suggest great caution in interpreting these artifacts as
nonlinearities in turbulent signals, as Trevin˜o and Andreas
do in Ref. 1. We should note, by the way, that we were
motivated to discuss the Wigner transform because we be-
came aware that some in the physics community were famil-
iar with the use of the Wigner transform for time-frequency
analysis similar to ours, but not with the continuous wavelet
transform.

Second, we are somewhat confused by the discussion in
Ref. 1 concerning certain points of Fourier analysis. In Ref.
1, the authors state that wavelets form an incomplete set.

Wavelet sets are in fact typically designed to be complete
bases, and continuous wavelet transforms are designed to be
invertible, so that the original signal can always be recovered
from the wavelet expansion or transform. Since the original
signal can be recovered from the wavelet transform, there is
no information ‘‘lost’’ in the transform, at least in theory.
~Here we must mention that the continuous wavelet trans-
form in Ref. 2, using the Morlet wavelet, is not invertible.
However, a small perturbation of the wavelet will produce a
continuous wavelet transform which is invertible; see Ref. 6
or 7. We used the Morlet wavelet, which is often used in
practice, for simplicity.!

Also, in Ref. 1 it is stated that a null function is one whose
integral over the domain is 0, and the authors cite the theo-
rem of Lerch that two functions have the same Fourier trans-
form if they differ by a null function. The authors describe
products of a wavelet with certain components of a signal as
null functions, and they invoke this as an explanation for
why wavelet analysis does not show certain kinds of infor-
mation. But the analogy does not work since a null function
is really one which is essentially constantly zero—in fact, a
continuous null function will be constantly zero.~Here, by
essentially constantly zero we mean a function which differs
from zero only on a set of measure zero, such as a finite or
countable set. Trevin˜o and Andreas intend that a null func-
tion is one whose integral over the domain is zero, but if that
is taken to be the definition of a null function, then the theo-
rem of Lerch is no longer true, e.g., consider the function
sinx on the domain@0, 2p#.! Thus we believe that null func-
tions are not the explanation for why the continuous wavelet
transform does not display information such as the trend of a
signal.

Wavelet analysis has generated intense interest and activ-
ity, and it is perhaps inevitable that unreasonable claims
would be made about it. It was our hope in writing Ref. 2 to
provide an understanding of time-frequency analysis and the
use of the continuous wavelet transform in the context of
time-frequency analysis that would enable our readers to use
this new tool in an appropriate way.
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