
Time-frequency analysis with the continuous wavelet transform
W. Christopher Lang and Kyle Forinash
Natural Sciences Division, Indiana University Southeast, New Albany, Indiana 47150

~Received 20 June 1997; accepted 6 February 1998!

The continuous wavelet transform can be used to produce spectrograms which show the frequency
content of sounds~or other signals! as a function of time in a manner analogous to sheet music.
While this technique is commonly used in the engineering community for signal analysis, the
physics community has, in our opinion, remained relatively unaware of this development. Indeed,
some find the very notion of frequency as a function of time troublesome. Here spectrograms will
be displayed for familiar sounds whose pitches change with time, demonstrating the usefulness of
the continuous wavelet transform. ©1998 American Association of Physics Teachers.
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Imagine the following engineering problem: Develop so
ware which from recorded music will produce correct sh
music notation for that music. Thus if the note ‘‘C’’ is hea
~a pitch of 262 Hz! for one-fourth of a second, followed b
the note ‘‘A’’ ~440 Hz! for another quarter-second, the so
ware would produce a plotting indicating 262 Hz for 0<t
<0.25 and 440 Hz for 0.25<t<0.5. We may assume th
input music would be presented in numerical form.~Thus,
for example, a monaural sound sampled at 9000 Hz migh
given as 9000 eight-bit numbers per second.! How then
would our software accomplish this task?

The most basic technique for determining the freque
distribution of a signalf (t) is the Fourier transform. This
is given by the familiar integral transform f̂ (v)
5*2`

` f (t)e2 i tv dt. If we wish to determine what pitches o
frequencies were audible during the time interval 0.25<t
<0.5, we could perhaps compute the Fourier transform of
restricted to that time interval. That is, we could simply co
pute that integral fromt50.25 tot50.5 instead oft52` to
`. This will work after a fashion~although we cannot expec
the Fourier transform to display too narrow a peak atv equal
to 440 Hz, since the integral is not computed over very ma
cycles!. More generally, we could select a valueh ~repre-
senting perhaps one-half of the duration of the shortest n
of the music! and compute for eacht andv the integral

Thf ~ t,v!5E
t2h

t1h

f ~t!e2 i tv dt.

SoThf (t,v) would represent in some sense the energy of
signal at frequencyv in the neighborhood of timet. This
transform is known as the ‘‘short-time Fourier transform
and it has been the traditional technique in signal analysis
tracking pitches or frequencies as they change over time

There is, however, an important limitation with th
short-time Fourier transform: In restricting the integral
the interval t2h to t1h, we are in effect chopping the
signal sharply at those times. This has the effect of int
ducing lots of high-frequency ‘‘information’’ into the trans
form; we get a Fourier transform that is more spread-out t
necessary. We can mitigate this problem to some exten
introducing a smooth ‘‘window function’’g. We could ar-
rangeg to be nonzero on the interval@2h,h# but be~close
to! zero outside that interval. The Gaussian functiong(t)

5(1/hA2p)e2t2/2h2
would serve the purpose. We wou

then for eacht andv compute
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T f~v,t !5E
2`

`

g~t2t ! f ~t!e2 ivt dt.

Plotting uT f(v,t)u for each (t,v) ~as a density plotting!
would produce a spectrogram which would show~at least
roughly! the frequency content of the signal as a function
time. It could actually produce recognizable ‘‘music not
tion’’ for recorded music. This transform is known as th
Gabor transform, after Dennis Gabor, who introduced it
the 1940s.

The Gabor transform has a subtle limitation which t
continuous wavelet transform will be introduced to addre
The limitation is this: The ‘‘width’’ of the window function
g is constant. A narrow window~h small! will localize
higher pitches both in frequency and time nicely, but low
pitches will be ‘‘blurry’’ in frequency. A wider window~h
larger! will determine lower pitches~bass notes, say! better,
but the higher pitches will be ‘‘blurry’’ in time. See Fig. 1~a!
and~b! for plottings of an artificial signal which demonstra
this effect.

In the early 1980s, Morlet and Grossman modified t
Gabor transform to produce the continuous wavelet tra
form. The idea is this: Change the width of the windo
function according to the pitch of the note being consider
The new transform could be given by

W f~ t,v!5E
2`

`

f ~t!g~~t2t !v!e2 ivt dt.

Notice the insertion of the factorv into the window function.
Actually, the continuous wavelet transform is more prope
given as

W f~ t,v!5E
2`

`

f ~t!w~~t2t !v!v dt, ~1!

where now the ‘‘wavelet’’ functionw combines the complex
exponential and the Gaussian;w is typically given as

w~ t !5
1

hA2p
eite2t2/2h2

. ~2!

This is called a wavelet function because it is oscillatory b
has the limited support provided by the window functiong.
@The extra factor ofv in integral ~1! keeps the ‘‘mass’’
* uw(tv)vudt of the wavelet constant as it is dilated, asv
increases; otherwise the spectrogram will ‘‘fade out’’
higher values ofv.# The parameterh can be adjusted to tun
the transform to be more sensitive to frequency or more s
794© 1998 American Association of Physics Teachers
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sitive to time;h plays the same role as it does in the sho
time Fourier transform described above.

See Fig. 1~c! for a spectrogram made using this transfo
which shows good frequency and time localization for t
artificial signal shown in Fig. 1~a! and ~b!. Often, the scalo-
gram is plotted with the frequency axis logarithmic, so th
equal octaves in frequency occupy the same vertical widt
the scalogram~an octave is an interval of frequency from
given frequency to twice that frequency, just as in music!.

Here, we provide the spectrograms of several example
nals using the above transform to give an idea of the use
ness of the method. These were computed using C11 by the
authors; each pixel of the image represents a value
W f(t,v) for a certain (t,v); the value of that integral wa
computed as a simple inner product.~The authors will pro-
vide pseudocode to any interested reader.!

Figure 1 shows spectrograms of an artificial signal. T
signal consists of several tones; one tone is an 80-Hz si
which lasts from 1 to 4 s with a brief 0.2 s interruption a
time 2 s. The other tones last from 1 to 7 s and have frequen

Fig. 1. Spectrograms of an artificial sinusoidal signal consisting of an in
rupted 80-Hz pure tone superimposed over pure tones of 10 and 13 H~a!
shows a short-time Fourier~Gabor! transform spectrogram with a narrow
window (h50.05 s); ~b! shows the same type of spectrogram with a wi
window (h50.3 s); ~c! shows a continuous wavelet transform spectrogr
which resolves both time and frequency well.
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cies of 10 and 13 Hz, respectively. Figure 1~a! shows a short-
time Fourier~Gabor! transform with a relatively narrow win-
dow width; time is well-localized but the two lowe
frequency tones are not resolved. Figure 1~b! shows the same
type of transform but with a wider window; the two low
frequencies are now resolved but now the interruption in
higher-frequency term is not resolved.@The values ofh used
in Fig. 1~a! and~b! are, respectively, 0.05 and 0.3 s.# Figure
1~c! shows a continuous wavelet transform where both ti
and frequency are well-localized. Note the vertical bars
the ends of the notes as they appear in the spectrogr
reflect the sharp cut-off and cut-on of the tones—sharp ed
in a signal imply higher-frequency content.

Figures 2–4 show several sound samples, each take
9000 samples per second for 0.8 s using Vernier’s ULI A
board and microphone.1 Figure 2 shows the spectrogram
the sound of two tuning forks, one producing the note ‘‘C
or do ~256 Hz!, the other producing the note ‘‘G’’ orso ~384
Hz!; the second tuning fork was pulled away from the m
crophone after about 0.35 s. Figure 3 shows the spectrog
of a whistle that is rising in pitch. The breaks in the plottin
are caused by changes in volume of the whistle, perhaps
to the process of reshaping the mouth during the whis
Figure 4 shows the spectrogram of one of the authors sing
the notesdo ré mi.

There is a fundamental limitation on how well frequen
and time can both be determined using this method. T
amounts to a type of uncertainty principle inherent in bo
the Fourier transform and the wavelet transform. This th
rem says that a signal and its Fourier transform cannot b
have small support. More precisely, for a functionc(t) with

r-

Fig. 2. The spectrogram of the sound of two tuning forks, one producin
256-Hz signal, the other producing a 384-Hz signal; the second tuning
was pulled away from the microphone after about 0.35 s.

Fig. 3. The spectrogram of the sound of a whistle of rising pitch.
795W. C. Lang and K. Forinash
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norm 1 (* uc(t)u2 dt51), define the center of the function t
be the numbert85* tuc(t)u2 dt, and define the width of the
function to be

Dc5S E ~ t2t8!2uc~ t !u2 dtD 1/2

.

~The center ofc is the expected value ofucu2 in the sense of
probability theory, and the width ofc is the variation of
ucu2.! The uncertainty principle statesDcDĉ>1/2. The prod-
uct in this inequality reaches its minimum value~of 1/2!
exactly when the signal is a Gaussian. This explains why
Morlet Gaussian wavelet works well at time and frequen
localization.~See Ref. 2 for an elementary proof and discu
sion of the uncertainty principle in the context of wavele
Ref. 3 is a general mathematical reference on continu
wavelet transforms.!

In quantum mechanics, the probability density for the p
sition of a particle is given byuc(r ,t)u2, where the position
wave functionc(r ,t) is a function of positionr and timet.
The momentum probability density is then given
uP(r,t)u2 where the momentum waveformP(r,t) is the
Fourier transform~over the space variabler ! of the position
waveform. The uncertainty principle inherent in the Four
transform then becomes the familiar statement that the
mentum and position of a particle cannot both be determi
to arbitrary precision.~See Ref. 4.!

The question of quantum uncertainty was treated
Wigner and led eventually in the 1940s to the Ville–Wign
distribution of time and frequency~Ref. 5 or Ref. 6!, an early
attempt to express frequency as a function of time. The
tribution V f(t,v) for a signal f (t) is intended to have the
following properties.

~1! If V f(t,v) is the Wigner distribution for a signalf (t),
thenV f(t2t0 ,v) is the Wigner distribution for the sig
nal f (t2t0); and V f(t,v2v0) is the Wigner distribu-
tion for the signalf (t)e2 ivt ~the Wigner distribution is
‘‘time-frequency shift covariant’’!.

~2! The Wigner distribution for the signalf (t)5h21/2

3exp(iv0t)g((t2t0)/h) @where g(t)5p21/4e2t2/2# is
V f(t,v)52 exp((t2t0)

2/h2) exp(2h2(v2v0)). Here f (t)
represents a signal concentrated both in time neart0 and
in frequency nearv0 ; the Wigner distribution is a
Gaussian with respect to time and to frequency, conc
trated at (t0 ,v0).

Fig. 4. The spectrogram of one of the authors singing the notesdo ré mi.
Harmonics corresponding to the different pitches can be clearly seen.
796 Am. J. Phys., Vol. 66, No. 9, September 1998
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~3! 1/2p*2`
` V f(t,v)dv5u f (t)u2 @this serves as a Plan

cheral formula; the idea is that at eacht, V f(t,v) is an
instantaneous Fourier transform#.

~4! *2`
` V f(t,v)dt5u f̂ (v)u2.

~5! 1/2p*V f(t,v)Wg(t,v)dtdv5u* f (t)g* (t)dtu2 ~this is
Moyal’s formula, a sort of Parseval formula!.

It turns out that the Wigner distribution is given by

V f~ t,v!5E
2`

`

f ~ t1t/2! f * ~ t2t/2!e2 ivt dt;

the properties above are easy to verify.@For example, the
integral in ~3! follows from the fact that 1/2p* ĥ(v)dv
5h(0), where h is taken to be the functionh(t)5 f (t
1t/2) f * (t2t/2).#

But the Wigner distribution has limitations for use in an
lyzing signals. These include expense@knowledge of the en-
tire signal is required to computeV f(t,v) for eacht, and
there is no ‘‘fast’’ algorithm available#, and the fact that a
spectrogram based on the Wigner distribution@a plotting of
V f(t,v) over the (t,v) plane# will show ‘‘interference’’ ar-
tifacts@the sum of two Gaussian ‘‘notes’’ as in~2! above will
result in a Wigner distribution spectrogram which sho
‘‘noise’’ in regions where there should be none#.

It should be noted that other transforms or wavelets
sides~1! or ~2! may be chosen. Indeed, the discrete wave
transform is widely used because of its algorithmic prop
ties.

In discrete wavelet transforms, only specific frequenc
are considered; typically, a waveletc is chosen and instea
of consideringc((t2t)v) for all (t,v) in a certain rect-
angle, the discrete set of waveletsc jk(t)5c(22 j t2k) is
used~here j and k are integers!. ~So only the angular fre-
quencies 22 j are dealt with.! It is possible to choosec such
that the resulting set forms an orthogonal basis ofL2(R),
and also such that the wavelet is nicely limited in time and
frequency. Then a functionf can be expressed as a ‘‘wavel
series’’ f 5( jkcjkc jk , wherecjk5* f * c jk dx, much like a
Fourier series. For certain waveletsc, there are very simple
fast algorithms for computing the wavelet coefficientscjk .
These algorithms rely on the fact that each coefficient
always a linear combination of other coefficients, so integr
do not have to be computed for every coefficient; a wave
c with smaller support will result in simpler relations amon
the coefficients, which makes algorithms simpler and fas

The speed of these algorithms is a primary reason
wavelets have proven so valuable for applications. One
application is image compression. The coefficients of a F
rier series of a digital signal can be used to reconstruct
original signal. Since most of the coefficients are typica
close to zero, they can be coded in a manner which takes
computer memory; this has proven to be a useful way
store images in a compact way~the popular JPEG forma
uses this technique!. Because of their sensitivity to the de
tails of an image, some discrete wavelet transforms h
shown their value in image and video compression wh
employed in a similar manner; this is an area of active
search and development.

An overview and discussion of wavelets and many of th
applications and the question of which wavelet choice is
propriate for a particular application is given by Ref.
Other expository works include Refs. 7–9. Reference
796W. C. Lang and K. Forinash
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gives a lucid account of the mathematical theory and de
opment of discrete wavelet bases. Recent articles dea
with discrete wavelet bases include Refs. 11 and 12;
latter includes suggestions for other applications in phys
There is an extremely large literature on wavelets, involv
many variations in their construction and application. T
Wavelet Digestpublished on the World Wide Web~see Ref.
13! contains links to bibliographies and other information
wavelets; commercial software packages are available
programs such asMATHEMATICA and MATLAB for persons
wishing to experiment with wavelets.
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