Time-frequency analysis with the continuous wavelet transform
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The continuous wavelet transform can be used to produce spectrograms which show the frequency
content of soundsgor other signalsas a function of time in a manner analogous to sheet music.
While this technique is commonly used in the engineering community for signal analysis, the
physics community has, in our opinion, remained relatively unaware of this development. Indeed,
some find the very notion of frequency as a function of time troublesome. Here spectrograms will
be displayed for familiar sounds whose pitches change with time, demonstrating the usefulness of
the continuous wavelet transform. @98 American Association of Physics Teachers.

Imagine the following engineering problem: Develop soft- o .
ware which from recorded music will produce correct sheet Tf(w,t)zf g(r—t)f(r)e'“"dr.
music notation for that music. Thus if the note “C” is heard o
(a pitch of 262 Hz for one-fourth of a second, followed by Plotting |Tf(w,t)| for each () (as a density plotting
the note “A” (440 H2 for another quarter-second, the soft- would produce a spectrogram which would shéat least
ware would produce a plotting indicating 262 Hz fo<®  roughly) the frequency content of the signal as a function of
=<0.25 and 440 Hz for 0.25t<0.5. We may assume the time. It could actually produce recognizable “music nota-
input music would be presented in numerical forfihus, tion” for recorded music. This transform is known as the
for example, a monaural sound sampled at 9000 Hz might b&abor transform, after Dennis Gabor, who introduced it in
given as 9000 eight-bit numbers per seconidow then the 1940s.
would our software accomplish this task? The Gabor transform has a subtle limitation which the
The most basic technique for determining the frequencycontinuous wavelet transform will be introduced to address.
distribution of a signalf(t) is the Fourier transform. This The limitation is this: The “width” of the window function
is given by the familiar integral transformf(w) 9 iS constant. A narrow windowh smal) will localize
= [*_f(t)e" ' dt. If we wish to determine what pitches or higher pitches both in frequency and time nicely, but lower

frequencies were audible during the time interval 825 pitches Wi” be “b[urry” in fre_quency. A wider window(h
=<0.5, we could perhaps compute the Fourier transforrh of largey will determine lower pitchesbass notes, sapetter,

; N X . but the higher pitches will be “blurry” in time. See Fig(d)
restrlcted_to that time interval. That IS, we could simply Com'and(b) for plottings of an artificial signal which demonstrate
pute that integral fromt=0.25 tot=0.5 instead of = —« to this effect
2. This will work after a fashiorialthough we cannot expect |, tho early 1980s, Morlet and Grossman modified the
the Fourier transform to display too narrow a peakaqual '

: _ ) Gabor transform to produce the continuous wavelet trans-
to 440 Hz, since the integral is not computed over very Man¥orm. The idea is this: Change the width of the window

cycles. More generally, we could select a valbe(repre-  tnction according to the pitch of the note being considered.
senting perhaps one-half of the duration of the shortest notegne new transform could be given by

of the musi¢ and compute for eachand w the integral

t+h Wf(t,a))ZfOO f(T)g((T_t)w)e—in dr.
hf(T)e_iT“’ dr. .

Thf(t,w)=J

Notice the insertion of the factaes into the window function.

Actually, the continuous wavelet transform is more properly
SoTyf(t,w) would represent in some sense the energy of thejiven as

signal at frequency in the neighborhood of timé. This -
transform is known as the “short-time Fourier transform,” Wf(t'w):j f(HwW((t—t)w)o dr, )
and it has been the traditional technique in signal analysis for —o
tracking pitches or frequencies as they change over time.
There is, however, an important limitation with the
short-time Fourier transform: In restricting the integral to
the intervalt—h to t+h, we are in effect chopping the 1 L,
signal sharply at those times. This has the effect of intro-  w(t)= —— elle 172", )
ducing lots of high-frequency “information” into the trans- hy2m
form; we get a Fourier transform that is more spread-out thafps s called a wavelet function because it is oscillatory but
necessary. We can m!pg_ate this pro_ble,m to some extent bPfas the limited support provided by the window functigpn
introducing a smooth wmdovy function’y. We could ar- [The extra factor ofw in integral (1) keeps the “mass”
rangeg to be nonzero on the intervi-h,h] but be(close [|w(tw)w|dt of the wavelet constant as it is dilated, @s
to) zero outside that interval. The Gaussian functit) increases; otherwise the spectrogram will “fade out” at

21912
=(1hy2m)e " would serve the purpose. We would higher values ofv.] The parameten can be adjusted to tune
then for eacht and w compute the transform to be more sensitive to frequency or more sen-

where now the “wavelet” functiorw combines the complex
exponential and the Gaussiam;is typically given as

794 Am. J. Phys66 (9), September 1998 © 1998 American Association of Physics Teachers 794



100 4096
— —————
60 4 2048
36 1024
Hz Hz
22 4 512
13 256
g 128 + T T T T T T
(a) 0.0 1.0 sec 8.0 0.0 0.1 sec 0.8
100 Fig. 2. The spectrogram of the sound of two tuning forks, one producing a

256-Hz signal, the other producing a 384-Hz signal; the second tuning fork
was pulled away from the microphone after about 0.35 s.

36 A
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2 - cies of 10 and 13 Hz, respectively. Figur@lshows a short-
time Fourier(Gabo)p transform with a relatively narrow win-
dow width; time is well-localized but the two lower
frequency tones are not resolved. Figu¢e) shows the same
8 - : - : ' ' type of transform but with a wider window; the two low
' ' frequencies are now resolved but now the interruption in the
higher-frequency term is not resolvd@he values oh used
in Fig. 1(a@) and(b) are, respectively, 0.05 and 0.3 Figure
1(c) shows a continuous wavelet transform where both time
and frequency are well-localized. Note the vertical bars on
the ends of the notes as they appear in the spectrograms
reflect the sharp cut-off and cut-on of the tones—sharp edges
in a signal imply higher-frequency content.

Figures 2—4 show several sound samples, each taken at
9000 samples per second for 0.8 s using Vernier's ULI A/D
board and microphoneFigure 2 shows the spectrogram of

S " - - — y ' o the sound of two tuning forks, one producing the note “C”
(¢ ’ ’ or do (256 H2, the other producing the note “G” @0 (384
Hz); the second tuning fork was pulled away from the mi-
Fig. 1. Spectrograms of an artificial sinusoidal signal consisting of an inter-crophone after about 0.35 s. Figure 3 shows the spectrogram
rupted 80-Hz pure tone superimposed over pure tones of 10 and 1@Hz. of a whistle that is rising in pitch. The breaks in the plotting
sr_\ows a short-time FourigGaboy transform spectrogram with anarrow gre caused by changes in volume of the whistle, perhaps due
window (h=0.05s); (b) shows the same type of spectrogram with a wide y, the process of reshaping the mouth during the whistle.
xmﬁv;'eg'ojvzs sz)'ﬂ(]czi;Zogrfdirce%r:'e"nuczufvﬁveIEt transform spectrogram iy e 4 shows the spectrogram of one of the authors singing
the notesdo re mi.
There is a fundamental limitation on how well frequency
and time can both be determined using this method. This
sitive to time;h plays the same role as it does in the short-amounts to a type of uncertainty principle inherent in both
time Fourier transform described above. the Fourier transform and the wavelet transform. This theo-

See Fig. lc) for a spectrogram made using this transformrem says that a signal and its Fourier transform cannot both
which shows good frequency and time localization for thenave small support. More precisely, for a functig(t) with
artificial signal shown in Fig. & and (b). Often, the scalo-
gram is plotted with the frequency axis logarithmic, so that
equal octaves in frequency occupy the same vertical width in
the scalograntan octave is an interval of frequency from a 5,
given frequency to twice that frequency, just as in music

Here, we provide the spectrograms of several example sig s |
nals using the above transform to give an idea of the useful-
ness of the method. These were computed usig-®y the 1550 1
authors; each pixel of the image represents a value oH:
W{(t,w) for a certain {,w); the value of that integral was 1200 1
computed as a simple inner produ€the authors will pro-
vide pseudocode to any interested regder.

Figure 1 shows spectrograms of an artificial signal. The
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signal consists of several tones; one tone is an 80-Hz signe 00 04 ' ' o ' ' o
which lasts from 1a 4 s with a brief 0.2 s interruption at
time 2 s. The other tones last fromd 7 s and have frequen- Fig. 3. The spectrogram of the sound of a whistle of rising pitch.
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1000 (3) 12w = Vi(t,w)dw=|f(t)|? [this serves as a Plan-

cheral formula; the idea is that at eaghvVf(t,w) is an
7501 p— instantaneous Fourier transfofm
) (@) [2.VE(tw)dt=]f(w)]
He /—’ (5) 12w [V{(t,0)Wy(t,w)dtdo=|[f(t)g* (t)dt|? (this is
25 | Moyal's formula, a sort of Parseval formula
25 ———T It turns out that the Wigner distribution is given by
RS b ¥ " . ' ' e Vi(t,w)= fﬁmf(t+ 12)f* (t—r/2)e ' *7 dr;

Fig. 4. The spectrogram of one of the authors singing the ruese mi.

Harmonics corresponding to the different pitches can be clearly seen. the properties above are easy to Ve”'-ﬁ?or exa’Pp'e’ the

integral in (3) follows from the fact that 1/2/h(w)dw
=h(0), where h is taken to be the functiom(r)="f(t
+7/2)f* (t—7/2).]
norm 1 (f|#(t)|? dt=1), define the center of the functionto  But the Wigner distribution has limitations for use in ana-
be the numbet’ = [t|(t)|? dt, and define the width of the lyzing signals. These include experfig@owledge of the en-

function to be tire signal is required to computéf(t,») for eacht, and
there is no “fast” algorithm availablg and the fact that a

12 spectrogram based on the Wigner distributianplotting of

Af(f (t=t)?y(t)]> dt| . V{(t,w) over the {,») pland will show “interference” ar-

tifacts[the sum of two Gaussian “notes” as (&) above will
result in a Wigner distribution spectrogram which shows

. 2 .
(The center ofy is the expected value ¢#|° in the sense of “noise” in regions where there should be ndne

prozbability theory,. and _thg width of is the variation of It should be noted that other transforms or wavelets be-
|41 '_) Th(_a u_ncertanjty principle s_tatex3_¢,4¢2 1/2. The prod- sides(1) or (2) may be chosen. Indeed, the discrete wavelet
uct in this inequality reaches its minimum valdef 1/2)  ansform is widely used because of its algorithmic proper-
exactly when the signal is a Gaussian. This explains why thgeg

Morlet Gaussian wavelet works well at time and frequency | giscrete wavelet transforms, only specific frequencies
localization.(See Ref. 2 for an elementary proof and discus-gre considered: typically, a wavelgtis chosen and instead
sion of the uncertainty principle in the context of wavelets; consideringy((7—t)w) for all (t,w) in a certain rect-
Ref. 3 is a general mathematical reference on continuougngle the discrete set of wavelezl,@k(t)=<//(2*it—k) is

wavelet transforms. sed(herej andk are integers (So only the angular fre-
In qguantum mechanics, the probability density for the po-u 1€re . Integer only gu
quencies 2! are dealt with. It is possible to choosé such

sition of a particle is given byy(r,t)|2, where the position : .
wave functiony(r,t) is a function of positiorr and timet. that the resulting set forms an or.thogo.nall ba.5|5176(fR), .
and also such that the wavelet is nicely limited in time and in

The momentum probability density is then given by X "
ITI(p,t)|2 where the momentum wavefori (p,t) is the frequency. Then a functiohcan be expressed as a “wavelet
: , = e )
Fourier transform{over the space variabl® of the position ~ S€Mes” f=2C;j, wherecy=Jf* y; dx, much like a
waveform. The uncertainty principle inherent in the FourierFourier series. For certain wavelgsthere are very simple,

transform then becomes the familiar statement that the mdast algorithms for computing the wavelet coefficienfg.
mentum and position of a particle cannot both be determinedhese algorithms rely on the fact that each coefficient is
to arbitrary precision(See Ref. 4. always a linear combination of other coefficients, so integrals
The question of quantum uncertainty was treated bydo not have to be computed for every coefficient; a wavelet
Wigner and led eventually in the 1940s to the Ville—Wigner # With smaller support will result in simpler relations among
distribution of time and frequenafRef. 5 or Ref. 6, an early the coefficients, which makes algorithms simpler and faster.
attempt to express frequency as a function of time. The dis- The speed of these algorithms is a primary reason that

tribution Vf(t,w) for a signalf(t) is intended to have the Wavelets have proven so valuable for applications. One key
following properties. application is image compression. The coefficients of a Fou-

rier series of a digital signal can be used to reconstruct the
(1) If VI(t,w) is the Wigner distribution for a signdl(t), original signal. Since most of the coefficients are typically
thenVf(t—ty,w) is the Wigner distribution for the sig- close to zero, they can be coded in a manner which takes less
nal f(t—tp); and Vf(t,w—w,) is the Wigner distribu- computer memory; this has proven to be a useful way to
tion for the signalf(t)e'“! (the Wigner distribution is Store images in a compact wdthe popular JPEG format
“time-frequency shift covarianty. uses this techniqueBecause of their sensitivity to the de-
(2) The Wigner distribution for the signaf(t)=h"2 tails of an image, some discrete wavelet transforms have
a2 shown their value in image and video compression when
X exp(wot)g((t—to)/h) ) [\évhere g(zt)_w e "1 IS employed in a similar manner: this is an area of active re-
Vi(t,w)=2 exp(¢—to) /h%) exp(—h (w—afo))._ Heref(t)  search and development.
represents a signal concentrated both in time fgand An overview and discussion of wavelets and many of their
in frequency nearwg; the Wigner distribution is a applications and the question of which wavelet choice is ap-
Gaussian with respect to time and to frequency, concerpropriate for a particular application is given by Ref. 5.
trated at (o, wq). Other expository works include Refs. 7-9. Reference 10
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gives a lucid account of the mathematical theory and deve|_3M. HolschneiderWavelets, An Analysis To@Clarendon, Oxford, 1995
opment of discrete wavelet bases. Recent articles dealing?lbert MessiahQuantum Mechanics, Vol, translated by G. M. Temmer
with discrete wavelet bases include Refs. 11 and 12; thgNorth-Holland, Amsterdam, 1970vol. I, p. 50.
latter includes suggestions for other applications in phySiCS.Y_VES Meyer, Wavelets: Algorithms 'and Ap.pllcatlorikanslated and re-
There is an extremely large literature on wavelets, involving //S¢9 PY Robert D. Ryan[SIAM, Philadelphia, 1998 .

. . . . L Leon Cohen,Time-Frequency Analysidrentice-Hall, Englewood Cliffs,
many variations in their construction and application. The NJ, 1995,
Wavelet D'ge_SDUb“Sh_ed_ on the_World Wide V_Ve(lsee R_ef' "Barbara Burke Hubbard;he World According to Wavelets: The Story of a
13) contains links to bibliographies and other information on  pjathematical Technique in the Makir@eters, Wellesley, MA, 1998
wavelets; commercial software packages are available forong ed.

programs such amATHEMATICA and MATLAB for persons  S8Gerald KaiserA Friendly Guide to Wavelet@irkhauser, Boston, 1994

wishing to experiment with wavelets. °Eugenio Hernandez and Guido L. Weigs,First Course in Wavelets
(Studies in Advanced Mathemati¢§RC, Boca Raton, FL, 1996
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