
Waves. 
 
These notes are not a substitute for reading the book and working problems.  
 
The wave equation. 
 
Many different types of waves are governed either exactly or approximately by the linear 

wave equation; 2
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∂  where y(x,t) represents the wave function.  

• If the equation is describing waves on a string y(x,t) represents the vertical 
displacement of the string from equilibrium at location x and time t. 

• If the equation is describing sound waves y(x,t) represents the difference of 
normal atmospheric pressure from equilibrium at location x and time t (the 
pressure squared is proportional to the loudness). 

• If the equation is describing water waves y(x,t) represents the vertical 
displacement of the water from equilibrium at location x and time t. 

• If the equation is describing electromagnetic waves y(x,t) represents the amount of 
magnetic or electric field at location x and time t .  

1. For waves on a string the linear wave equation can be derived from (and is 
equivalent to) Newton’s second law, F = ma (recall that a is the second 
time derivative of location which is what is on the right side of the wave 
equation). The speed of the wave in this case is ρ/Tv =  where T is the 
tension in the string and ρ is the density per length. 

2. Maxwell started with Maxwell’s equations and derived the following 
equation for the y component of the electric field: 
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με . He found a similar equation for the 

magnetic field. If we compare this with the wave equation we see that it is 
the wave equation provided these electromagnetic waves travel at a speed 
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. When Maxwell figured this out he was the 

first person to realize that light (and radio, x-rays, uv, ir, etc.) were 
electromagnetic waves.  

 
Wave functions (solutions to the wave equation). 
 
Almost any function which has the form )(),( vtxftxy ±= will be a solution to the wave 
equation. However it is most common to focus on sine and cosine functions because 
other shapes can be constructed by adding together sines and cosines: 

)cos(),( φω +−= tkxytxy o . Here the maximum amplitude (height) of the wave is yo, the 
wave number in 1/m is k, the angular frequency ω in rad/s is and φ is the phase angle in 
radians. For electromagnetic waves we have )cos(),( φω +−= tkxEtxE o  and 



)cos(),( φω +−= tkxBtxB o  where Eo and BBo are the maximum electric and magnetic 
fields. 
The following relationships are useful for all types of waves:  

• fπω 2= where f is the frequency of oscillation in Hertz (Hz). 
o Frequency tells us the pitch of sound waves or the color of 

electromagnetic waves. 
•  λπ /2=k  where λ is the wavelength in meters. 
• kfv /ωλ == is the speed of the wave. 
• The wave function )cos(),( φω +−= tkxytxy o describes a wave traveling to the 

right. Changing the minus sign to a plus sign describes a wave traveling to the 
left. 

• Keep in mind that the material or fields making up the waves don’t really go any 
where, they just oscillate in magnitude in the same place. Water waves sloshes up 
and down, string vibrates up and down, air in a sound waves oscillates back and 
forth and the electric and magnetic fields change strength and direction but the air, 
water, string and fields don’t actually go anywhere. 

• The velocity of the material (water, string, air) as it moves back and forth or up 
and down is different from the wave velocity. The material velocity is given by 
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point on the string (air molecule, water drop) is ωoyv =max  where yo is the 
maximum amplitude. 

• The acceleration of the material (water, string, air) as it moves back and forth or 
up and down is given by the second derivative of location: 
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drop of water (piece of the string, etc.) is . 2
max ωoya =

• Breaking waves like you see at the beach do travel but they are not described by 
the linear wave equation or sines and cosines. 

 
How do we know that )cos(),( φω +−= tkxytxy o  is the correct wave function for the 
wave equation? One way to tell is to substitute it directly into the wave equation. The 
wave equation says two derivatives with respect to x on the left side should equal 

times two derivatives with respect to t on the right. When you do this you find out 
everything cancels except 

2/1 v
kv /ω= which is where this relationship comes from in the 

first place. 
 
Adding waves. 
 
Because this is a linear wave equation we are talking about we can add together any 
number of sines or cosines and still have a solution. So if y1(x,t) and y2(x,t) are both 
solutions then y1(x,t)+ y2(x,t) is also a solution also (you can easily prove this by 
substituting y(x,t)= y1(x,t)+ y2(x,t) into the wave equation and see what happens). Here 



are some physical phenomena that can be explained by adding waves (check your book 
for explanations and equations which govern these phenomena): 

• Beats: the frequency heard when two waves are present with slightly different 
frequencies is f = f1 –f2 where f1 and f2 are the original frequencies. 

• Standing waves: two identical waves traveling in opposite directions will 
produce a standing vibration like the vibration of a guitar string. 

• Path difference: Two identical waves which travel different distances may arrive 
at the same location either in phase, out of phase or partially in/out of phase. If 
they are in phase they add (constructive interference) if they are out of phase 
they destroy each other (destructive interference). The concept of path 
difference explains the following: 

o Young’s double slit experiment. 
o Iridescence (colors on peacock wings, moth wings, oyster shells).  
o Colors on a compact disk (CD). 
o Colors on soap bubbles and other thin films. 
o Sound cancellation headphones. 

• Diffraction: Waves will interact with objects and openings which are close to the 
same size as the wavelength of the wave. In general this causes the path of the 
wave to deviate from a straight line direction. 

o Single slit diffraction is an example. 
o All optical instruments (including radio telescopes, microscopes, 

telescopes, cameras etc.) have limited resolution because of diffraction. 
The smallest angle by which two objects can be apart and still be 

distinguished is given by 
DR
λθ 22.1=  where D is the diameter of the 

opening and λ is the wavelength of light (radio wave, etc.) being used. 
• Fourier’s theorem:  

o Any periodic shape (triangle wave, square wave, etc.) can be formed by 
adding together a combination of sines and cosines.  

o Any periodic shape (triangle wave, square wave, etc.)can be broken down 
into a combination of sines and cosines. 

o We can hear the difference between a trumpet and a clarinet even if they 
play the same note because, although the fundamental frequency is the 
same, there are other frequencies (other sines or cosines) present which 
change the sound.  

o A musical synthesizer adds the appropriate sines and cosines to get the 
wave function to look (and sound) like that of a clarinet or trumpet. 

 
 
Doppler shift. 
 
The frequencies of both light and sound undergo a shift if either the source of the wave or 
the observer of the wave is moving.  
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speed of the source and vo is the speed of the observer. These speeds are positive 
numbers if the object and source are getting closer together but become negative 
if they are moving away from each other. 

• For light the shift is 
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relative speed between observer and source. The same sign conventions apply. 
• Applications of the Doppler shift include: 

o Police radar. 
o Weather radar. 
o Measurement of the motion and rotation of stars and galaxies. 
o Measurements of the expansion rate of the universe. 

• It is important to realize that applications of the Doppler shift (police radar, 
Doppler weather radar, etc.) are not measuring the time needed for the wave to 
return. Police radar and weather radar bounce microwaves off of objects and 
measure the change in frequency fff ′−=Δ . Given the speed of light and the 
frequency shift the speed of the object can be calculated from the Doppler shift 
equation. 


