
NOTES 9: Harmonic Motion and Chaos.

• These are supplementary notes only, they do not take the place of reading the
text book. 

• Like learning to ride a bicycle, you can only learn physics by practicing. There
are worked examples in the book, homework problems, problems worked in
class, and problems worked in the student study guide to help you practice. 

Key concepts:

1. The motion of a mass hanging from a spring, a pendulum swinging through
small angles and many other motions can be described by a single type of
equation. A motion is called harmonic motion if the force acting on the
object can be written as a constant times the displacement (a Hooke's law
force): F = -kx where k is a constant.

2. Since it is also true that F =  ma and a = d2x/dt2 we have the following version
of Newton's second law for a mass on a spring called the simple harmonic
oscillator equation:  -k x = m d2x/dt2. This is called a differential equation
because it has derivatives in it. the location of the mass, x, is now no longer
just a number, it is a function of time (the location of the mass on the spring
changes with time).

3. The equation  -kx = md2x/dt2 describes the forces acting and the acceleration
but it does not describe the motion of the object. Solutions to this equation
describe the actual motion and can be written in the form x(t) = A cos (ωt + φ)
where A is the maximum amplitude, ω the angular frequency and φ is the
phase (sine and exponential functions are also solutions but we will use
mostly cosine). The solution says that as time advances the location, x(t), of the
mass on the spring goes from some maximum positive value, A, to the
minimum value of -A because the maximum and minimum values of cos are +1
and -1. That motion repeats as t continues to get larger. In other words the
mass bobs up and down at the end of the spring.

4. The angular frequency, ω, in radians per second is related to the number of
cycles (from max to min and back to max) per second, f, by ω = 2π f. f is called
the frequency of oscillation and is measured in Hertz where 1 Hz= 1
cylce/sec. A higher frequency (or angular frequency) means the mass bobs up
and down faster.

5. The period of the motion in seconds is the inverse of frequency: T = 1/f.
6. The phase angle, φ , tells us when the clock started on our measurements. If φ

= 0 then we started the motion at t = 0 when the mass was at the top of its
oscillation because cos (0) = 1. If φ = π/2 radians it means we started the clock
with t = 0 at the midpoint of the oscillation because cos (π/2) = 0. 

7. A first derivative of x(t) gives the velocity of the mass: v(t) = dx(t)/dt = -Aω sin
(ωt + φ). A second derivative of x(t) gives the acceleration: a(t) = d2x(t)/dt2 =
-Aω2cos (ωt + φ). So the maximum velocity of the mass is Aω and the maximum
acceleration is Aω2. Notice that the maximum velocity occurs as the mass
passes through the equilibrium point (x = 0) but acceleration is a maximum
the same time the amplitude is a maximum. 

8. We can prove that x(t) = A cos (ωt + φ) is a solution to  -k x(t) = m d2x(t)/dt2 by
direct substitution. Substituting x(t) = A cos (ωt + φ) on the left side and the
second derivative (from 7) on the right gives -kA cos (ωt + φ) = -mAω2cos (ωt +
φ). Dividing the cos out leaves -kA = -mAω2 or ω = (k/m)1/2.  This tells us that
the rate of oscillation, ω, is determined by the mass and the spring constant, k.
A stiffer spring vibrates faster, a smaller mass vibrates faster. 

9. ω = (k/m)1/2 is called the natural frequency of the oscillator and is sometimes
written as ωo.

What if there is friction? 
1. We can add a velocity dependent friction term to Newton's law for a harmonic

oscillator to get the damped harmonic oscillator equation:  -k x - b dx/dt =



m d2x/dt2 (this is still F = ma but now with two forces acting on the mass, the
spring and velocity dependent friction, -b dx/dt).

2. Solutions to this equation look like x(t) = A exp(-bt/2m) cos (ωt + φ). Notice the
only difference between this solution and the harmonic oscillator above is the
exponential function multiplying the amplitude, A. What does this mean? It
means the amplitude decreases over time. This is as we expect; friction would
have the effect of gradually making the oscillation smaller. 

3. The rate at which the oscillation slows (how fast the exponential decreases) is
determined by b, the friction coefficient. If the exponential stops the motion
before even one whole oscillation the motion is said to be over damped. If it
gets through exactly one oscillation it is said to be critically damped. If it gets
through one or more oscillations it is under damped.

4. How do we know  x(t) = A exp(-bt/2m) cos (ωt + φ) is a solution? Direct
substitution into -k x - b dx/dt = m d2x/dt2 ! We take two derivatives of x(t) and
put it on the right side, one derivative times b on the left and then k times x(t)
on the left. If you do that (it requires a bit of math) you find out that ω = (k/m -
(b/2m)2)1/2. Notice that the oscillator would vibrate with the natural frequency,
ωo = (k/m)1/2 , if the friction were zero (b = 0).

What if we don't want the oscillator to stop?
1. We can add one more force to the left side of Newton's law called a driving

force. The simplest kind of driving force is a sinusoidal force Fo sin (ωt). Notice
that the frequency, ω, here is the input frequency that you drive the oscillator,
not the natural frequency that the oscillator wants to vibrate at. 

2. Here is the equation for the driven, damped harmonic oscillator: Fo sin (ωt)
-k x - b dx/dt = m d2x/dt2 again, all the forces acting on the mass are on the left
side, mass times acceleration on the right.

3. What do the solutions look like? Surprise! x(t) = A cos (ωt + φ) once again.
Only now ω is not the natural frequency, it is the driving frequency. The
driving force compensates for the friction and the mass keeps oscillating. 

4. How do we prove this is a solution? Direct substitution! Put in x(t) every where
there is an x in the equation Fo sin (ωt) -k x - b dx/dt = m d2x/dt2. What we find

in this case when the algebra is done is that A=
Fo/m
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where ωo = (k/m)1/2 . The amplitude depends on the driving force amplitude, Fo,
the mass, the friction, the driving frequency and the natural frequency. In

doing this we also find out that =tan−1
ob/m
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 . In other words the

effect of driving the oscillator is that its maximum amplitude (starting point of
the clock) occurs at a different time. 

5. The natural frequency, ωo = (k/m)1/2 , is fixed by the spring constant, k, and the
mass but the driving frequency, ω,  is your choice, you can shove the mass at
any rate you wish. This means there is one special case for the amplitude. If



your driving frequency, ω, happens to equal the natural frequency, ωo, you get
the maximum value for A. This is called resonance and that particular driving
frequency which causes the largest amplitude is called the resonant
frequency. (Think of pushing your kid brother on a swing. The swing wants to
go back and forth at its natural frequency. If you push it at the same frequency
as the natural frequency the swings get larger. If you push at some other
frequency the swings do not get larger.). More examples below.

Applications and examples done in class, on quizzes, etc:

Harmonic oscillators and resonance turn up nearly everywhere. 
1. Almost anything that vibrates (pendulums, atoms in a solid, cork bobbing on

water, etc.) can be modeled as a harmonic oscillator, at least in a first
approximation.

2. A common example of resonance is your car's suspension system. If your tire is
out of balance it will act as a periodic driving force on the spring and shock
absorbing system. What you notice is that if you drive at a certain speed you
get a big vibration but driving slower or faster gives a smaller vibration. When
you feel the largest vibration the wheel is driving the system at the natural
frequency and you are at resonance.

3. Sound from an acoustic guitar does not come from the strings. The strings
drive the top and bottom of the guitar and the vibrating surfaces cause the air
to move in a way that we call sound. A good guitar is one that will resonate
well with the strings, meaning that it has natural frequencies in the same
range as those of the string.

4. Big bass speakers can often cause things to vibrate if the sound is at just the
right frequency. The speakers are driving the objects that vibrate at their
resonant frequency. 

5. The Tacoma narrows bridge collapsed because it had a natural frequency close
to the driving frequency of the wind. (Ask your instructor to show the film
clip.)

6. Magnetic resonance imaging, electron spin resonance and many other
techniques for investigation the atomic structure of solids depend on
resonance. Using an oscillating magnetic or electric field as the driver it is
possible to get the magnetic spin of an electron or other subatomic particle to
resonate (flip 180o in sync with the driver) if the driving frequency matches the
natural frequency. This allows you to determine the natural frequency of the
electron. This in turn tells you something about the environment of the
electron, it will have a different natural frequency depending on the kind of
chemical bonds there is with neighboring atoms.

Supplementary material

Pendulums. 
1. Suppose we suspend a mass, m, from a string of length l and pull it back

by a small angle θ. The rotational equivalent to Newton's law for circular
motion is τ = Iα . 

2. In this case the torque,  τ, provided by the weight acting at a distance l from
the pivot and the angle θ between the force and the lever arm is τ = mgl sin θ. 

3. The moment of inertia, I for a mass rotating around the suspension point is I =
ml2. 

4. Angular acceleration is second derivative of the angular position, α = d2 θ/dt2. 
5. So Newton's law becomes -mgl sin θ = I d2 θ/dt2. 
6. This is not a harmonic oscillator because of the sine function. For small angles

(in radians) however sin(θ) ≈ θ (try this on your calculator) and we can write
-mgl θ = I d2 θ/dt2 . Using I = ml2 and dividing out the mass gives -gθ = ld2

θ/dt2 . 
7. This is the identical equation to the harmonic oscillator, only the letters have

been changed. This tell us that the solution has to be the same and looks like θ



(t) = θo cos (ωt + φ)  with maximum amplitude,θo and  natural frequency, ωo =
(g/l)1/2 . 

8. Notice that the frequency of the pendulum is independent of the mass which is
why pendulums are used as the timing mechanism in clocks. 

9. Notice also that we could use a very sensitive pendulum to measure the
gravitational constant, g = 9.8 m/s2 by measuring slight changes in the
frequency.

Chaos. 
Lets add one more force, - qx3  to the damped, driven harmonic oscillator:

Fo sin (ωt) -k x - b dx/dt - q x3 = md2x/dt2 where q is a constant. This new term is
called nonlinear because, unlike -k x, it does not graph as a straight line. As you
will see in the chaos computer exercise, it causes the mass on a spring to have
some very interesting behavior. There is no closed form solution to this equation
(we can't find a formula for x(t)) but it can be solved numerically on a computer.
The resulting behavior is not random because we can determine exactly where
the mass will go at each time step. For some choices of the parameters  k, m, b
and q we get normal looking harmonic motion. But for other choices of the
parameters k, m, b and q we get behavior that does not seem to repeat in any
obvious pattern. Since the motion is determined by an equation it is not random,
although it may appear pretty random. In these cases we see that it is also true
that if we start the mass from two initial locations which are close together the
behavior quickly becomes quite different. A deterministic system (not random
because we can solve the equations) which is very sensitive to initial conditions is
said to be chaotic. 

An example of a chaotic system is the weather. Although we can write
down and solve (by computer) the equations for determining the weather next
week based on todays weather as input the equations are chaotic. This means
that if we use slightly different input parameters (temperature, pressure, etc.) for
todays weather we may get very different results for our prediction. This is why
weather predictions are not very accurate for several days in advance, the
predictions are too dependent on the input parameters. Even with the best data
we have for input we could still be off by a little and that slight uncertainty in our
initial data makes the prediction unreliable. 


